Breath holding reveals differences in fMRI BOLD signal in children and adults.
نویسندگان
چکیده
Application of fMRI to studies of cognitive development is of growing interest because of its sensitivity and non-invasive nature. However, interpretation of fMRI results in children is presently based on vascular dynamics that have been studied primarily in healthy adults. Comparison of the neurological basis of cognitive development is valid to the extent that the neurovascular responsiveness between children and adults is equal. The present study was designed to detect age-related vascular differences that may contribute to altered BOLD fMRI signal responsiveness. We examined BOLD signal changes in response to breath holding, a global, systemic state change in brain oxygenation. Children exhibited greater percent signal changes than adults in grey and white matter, and this was accompanied by an increase in noise. Consequently, the volume of activation exceeding statistical threshold was reduced in children. The reduced activation in children was well modeled by adding noise to adult data. These findings raise the possibility that developmental differences in fMRI findings between children and adults could, under some circumstances, reflect greater noise in the BOLD response in the brains of children than adults. BOLD responses varied across brain regions, but showed similar regional variation in children and adults.
منابع مشابه
Reproducibility of BOLD signal change induced by breath holding
Blood oxygen level dependent (BOLD) contrast is influenced by some physiological factors such as blood flow and blood volume that can be a source of variability in fMRI analysis. Previous studies proposed to use the cerebrovascular response data to normalize or calibrate BOLD maps in order to reduce variability of fMRI data both among brain areas in single subject analysis and across subjects. ...
متن کاملEffect of Phase-Encoding Reduction on Geometric Distortion and BOLD Signal Changes in fMRI
Introduction Echo-planar imaging (EPI) is a group of fast data acquisition methods commonly used in fMRI studies. It acquires multiple image lines in k-space after a single excitation, which leads to a very short scan time. A well-known problem with EPI is that it is more sensitive to distortions due to the used encoding scheme. Source of distortion is inhomogeneity in the static B0 field that ...
متن کاملFunctional magnetic resonance imaging of regional cerebral blood oxygenation changes during breath holding.
BACKGROUND AND PURPOSE Recently, noninvasive MRI methods have been developed that are now capable of detecting and mapping regional hemodynamic responses to various stress tests, which involve the use of vasoactive substances such as acetazolamide or inhalation of carbon dioxide. The aim of this study was to assess regional cerebral blood oxygenation changes during breath holding at 1.5 T. ME...
متن کاملRobustly accounting for vascular reactivity differences across subjects using breath-hold
Introduction Changes in the BOLD signal associated with neuronal activity reflect increased metabolic demand, cerebral blood flow (CBF) and cerebral blood volume (CBV). Inter-subject differences in local CBF and CBV contribute to differences in BOLD signal reactivity and, therefore, unmodelled variance in group level fMRI analyses. Characterisation of vascular (BOLD signal) responsiveness is of...
متن کاملSusceptibility-induced BOLD Sensitivity Variation in Breath Hold Task
INTRODUCTION Magnetic field inhomogeneity exist near the interface of air/tissue in the ventral brain (i.e. orbitofrontal cortex), which leads to susceptibility artifacts in fMRI including geometric distortion and signal loss [1-6]. In gradient echo acquisition, the induced susceptibility gradients will also cause echo time shift resulting to BOLD sensitivity changes, especially in the areas co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 25 3 شماره
صفحات -
تاریخ انتشار 2005